Statistical Query Transformations for Question Answering in the Web

Ilya Boyandin St. Petersburg State University, 2003

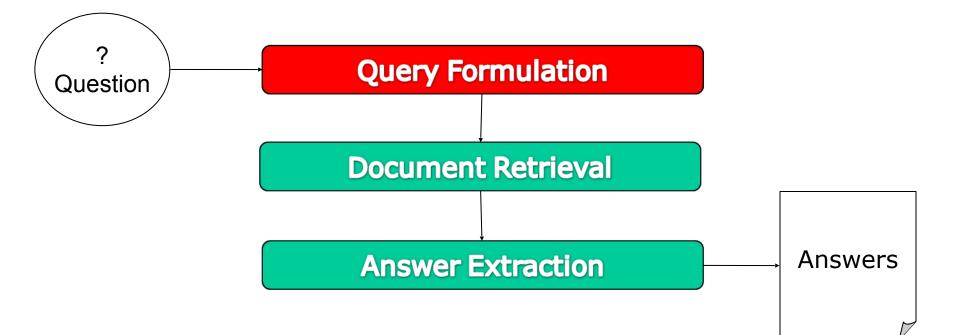
Question Answering

Goal: Find a short text fragment which answers the question.

Example:

- **Q**: Who invented the light bulb?
- A: Thomas Edison

Using Web for QA


Benefits

- Vast number of answers
- Constant updates
- Redundancy

Challenges

- Wrong and contradictory answers
- Undated information
- Heterogeneous, irregular structure

Components of a QA System

Query Formulation

Goals:

- "Translate" the question into the form the IR engine understands
- Narrow the set of documents to consider

Example:

Question: When was Nabokov born?

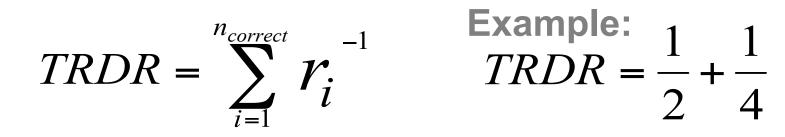
Query: Nabokov /4 !born

Question Transformation

Types of Transformations:

- Remove question words/other words
- Add words/phrases likely to be in the answer
- Add synonyms
- Morphological changes
- Add query language operators

— ...


Why Learning?

- Hard to predict what transformations will be better
- Far from all patterns are obvious

Evaluating Transformations

TRDR Metric:

- Query is sent to the IR engine
- Positions of the documents containing the right answers: (of the first $N^{\rm returned}$ documents)

QASM Algorithm

Atomic Operators

- E.g. add/remove/substitute words
- Transformation is a composition of atomic operators

Query Features

- E.g. type, number of words, number of nouns
- Context of a query: values of all features
- Questions/queries with the same context are treated in the same way

QASM: Learning

Training Set

Questions with answers

Iterative Learning

- 1. Applies every atomic operator to the query
- 2. Submits to the IR engine
- 3. Evaluates results, updates the model
- 4. Applies the best operator to the query
- 5. Next iteration

Resulting Model

Allows to find the best (statistically) operators for any context

QASM: Question Transformation

Input:

Question

Iterative Transformation

- 1. Calculates the context of the query
- 2. Finds the best operator for the context
- 3. If it's IDENTITY then stops
- 4. Applies the best operator to the query
- 5. Next iteration

Output:

IR engine query

Experimental Environment

Test set

100 questions from the Yandex log

Atomic Operators

- Remove words (based on frequency)
- Add query language operators: distance; restrict morphological changes

Query Features

Question type; Number of words; Number of nouns

QASM Analysis

Results

No quality improvement in most cases

Problem

The selectivity of the generated transformations was often too low or too high

Possible Causes

- Too small training set
- Choice of operators/features

Irregularity
Who won the Nobel peace
prize in 1975?
Who won the Nobel peace

mQASM

Changes to QASM

- Generates a set of best queries ordered by selectivity
- Submits queries until there is enough results
- Weights results and builds one ordered list

Evaluation Results

Stability of the Comparisons

- 40 random combinations

- 60 questions for training, 40 for testing
- Significance level: 5%
- Wins/Losses/Draws

	Yandex			QASM		
QASM	2	29	9	-		
mQASM	37	0	3	40	0	0

Evaluation Results

Same Experiment with Google

Environment is the same as with Yandex, except using less atomic operators

	Google			QASM		
Max	15	0	25			
QASM	12	4	24	-		
mQASM	15	3	22	8	4	28