
Ilya Boyandin, Foursquare

SQLRooms
Toolkit for human + agent data analytics apps

To simplify how developers build data analytics applications,

using SQL as the common foundation for humans and AI

Room
a self‑contained workspace where data lives, analysis happens, and (soon) collaborators meet

Why SQL

Universal Language for Data

Familiar to many data analysts, engineers

Rich Ecosystem & Standards

Declarative, High-Level Abstractions

State what you want, not how to compute it

Optimizations in execution engine improve perf with no code changes

Future-proof?

SQL + LLMs

LLMs Lower the Barrier to SQL

Power users can still write SQL directly

Less technical users can describe their intent in natural language

SQL as a Stable Target Language

Standardized, well-documented, and structured

Debuggable & Transparent

Still readable and inspectable by humans

SQL is both machine-friendly and human-friendly

intent SQL

SQL

results

results

Why DuckDB
Made for Analytics

columnar + vectorized → analytics-friendly, fast

Embeddable Anywhere

In browser via WASM

As a Python/R/C/C++ library

Efficient Interop

Arrow-native query results → zero-copy data exchange

Low Infra, Storage-First

Query data directly in S3/object storage (Parquet) → storage/compute separation

Multi-source queries

Offline use example

Progressive Web App (PWA)

Web Apps capable of working offline

OPFS for DuckDB Storage

Origin Private File System

Local storage / IndexedDB

Persisting app state

Local AI via Ollama

https://sqlrooms.org/offline-use.html

https://sqlrooms.org/offline-use.html

Single-node DB

Own your data

No cloud necessary for storing and querying

Fast Local Querying

No network round-trip or server lag

Privacy

Nothing leaves your DuckDB node (e.g. browser) unless you decide so

AI: Query results do not have to be shared with external model providers

Single-node scalability limits?
Data size

Good for moderately sized data

No network overhead between distributed nodes

Not so suitable for massive datasets unless partitioned or federated

High concurrency

WASM: DB Engine is in the end-user’s browser => client-side horizontal scaling

Alternative: Session-backends

Spin up on demand, share among multiple users for collaboration

Alternative data engines

Apache DataFusion

query engine (SQL/Python Dataframe)

uses Apache Arrow as its in-memory format

Apache SedonaDB

Single-node spatial DB (unlike Apache Sedona which is distributed)

similar to DuckDB but built from scratch for geospatial data

Both work as Python libs, no WASM yet

Can be used via Python SQLRooms server

to support in future

npm i @sqlrooms/*

What SQLRooms provides
Wiring up an analytical DB engine

via WASM, WebSockets or Motherduck

Functions for data loading, schema, querying, query management etc

Composable UI components for data-centric apps

Tables, Schema-tree, Query editor, …

Composable state management

Room store composed from slices

Easy to add custom state and store functions

Easy to work with state across slices

Integration with various libraries

e.g. Datavis: Vega, Mosaic, Recharts

@sqlrooms/ui

 <Button size="xs" onClick={newTable}>
 <PlusIcon className="h-4 w-4" />
 New table
 </Button>

 <Slider
 id={key}
 min={min}
 max={max}
 step={step}
 value={[config[key]]}
 onValueChange={(value) => handleParameterChange(key, value)}
 className="w-full"
 />

@sqlrooms/schema-tree

@sqlrooms/data-table

@sqlrooms/sql-editor

@sqlrooms/ai

@sqlrooms/vega

@sqlrooms/mosaic

@sqlrooms/kepler

@sqlrooms/cosmos

@sqlrooms/discuss

Modular toolkit

const {roomStore, useRoomStore} = createRoomStore((set, get, store) => ({
 ...createRoomShellSlice({
 config: {
 dataSources: [
 {
 type: 'url',
 tableName: 'earthquakes',
 url: 'https://.../earthquakes.parquet',
 },
],
 },
 })(set, get, store),
}));

export const MyRoom = () => (
 <RoomShell roomStore={roomStore}>
 <MyComponent />
 </RoomShell>
);

function MyComponent() {

 const isTableReady = useRoomStore((state) =>

 Boolean(state.db.findTableByName('earthquakes')),

);

 const queryResult = useSql<{maxMagnitude: number}>({

 query: `SELECT max(Magnitude) AS maxMagnitude FROM earthquakes`,

 enabled: isTableReady,

 });

 if (!isTableReady) return 'Loading…';

 const row = queryResult.data?.toArray()[0];

 return `Max earthquake magnitude: ${row?.maxMagnitude}`;

}

Room Store

Composing Store from Slices

const {roomStore, useRoomStore} = createRoomStore((set, get, store) => ({

 // Default slice

 ...createRoomShellSlice()(set, get, store),

 // Mix in sql editor slice

 ...createSqlEditorSlice()(set, get, store),

});

const runQuery = useRoomStore((state) => state.sqlEditor.parseAndRunQuery);

Adding Custom Store Function
const {roomStore, useRoomStore} = createRoomStore((set, get, store) => ({

 

 ...createRoomShellSlice()(set, get, store),

 ...createSqlEditorSlice()(set, get, store),

 celebrateSuccess() {
 const {queryResult} = get().sqlEditor;
 if (queryResult?.status === 'success') {
 set({hurray: true});
 }
 },

});

Adding Custom Store Function
const {roomStore, useRoomStore} = createRoomStore((set, get, store) => ({

 

 ...createRoomShellSlice()(set, get, store),

 ...createSqlEditorSlice()(set, get, store),

 async celebrateSuccess() {
 const {queryResult} = get().sqlEditor;
 if (queryResult?.status === 'success') {
 set({hurray: true});
 }
 },

});

Room layout
 ...createRoomShellSlice({
 config: {
 layout: {
 type: LayoutTypes.enum.mosaic,
 nodes: {
 direction: 'row',
 first: 'data-sources',
 second: 'main',
 splitPercentage: 30,
 },
 },
 },
 room: {
 panels: {
 'data-sources': {
 title: 'Data Sources',
 icon: DatabaseIcon,
 component: DataSourcesPanel,
 placement: 'sidebar',
 },
 'main': {
 title: 'Main view',
 icon: () => null,
 component: MainView,
 placement: 'main',
 },
 },
 },
 })(set, get, store),

Room layout

export const Room = () => {
 return (
 <RoomShell className="h-screen" roomStore={roomStore}>
 <RoomShell.Sidebar>
 <ThemeSwitch />
 </RoomShell.Sidebar>
 <RoomShell.LayoutComposer />
 <RoomShell.LoadingProgress />
 </RoomShell>
);
};

Composition is all you need

AI slice + tools
 ...createAiSlice({

 tools: {
 ...createDefaultAiTools(store, {query: {}}),

 chart: createVegaChartTool(),

 echo: {
 description: 'A simple echo tool that returns the input text',
 parameters: z.object({
 text: z.string().describe('The text to echo back'),
 }),
 execute: async ({text}: {text: string}) => {
 return {
 llmResult: {
 success: true,
 details: `Echo: ${text}`,
 },
 };
 },
 component: EchoToolResult,
 },
 },
 })(set, get, store),

Coming next

@sqlrooms/notebook

@sqlrooms/canvas

Realtime Collaboration

SQLRooms AI App Builder
Some of the building blocks

AI assistant, Code editor

WebContainer

WASM micro‑OS (by StackBlitz)

Sandboxed Node.js environment

Not open-source, but free for non-commercial use

